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Abstract. In this article we introduce a differential equation for the first order correlation function G(1)

of a Bose-Einstein condensate at T = 0. The Bogoliubov approximation is used. Our approach points
out directly the dependence on the physical parameters. Furthermore it suggests a numerical method to
calculate G(1) without solving an eigenvector problem. The G(1) equation is generalized to the case of non
zero temperature.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena –
42.50.-p Quantum optics

1 Introduction

The observations of atomic Bose-Einstein condensate
(BEC) in dilute atomic gases have triggered a great theo-
retical interest for this particular state of matter [1]. The
Bose-Einstein condensate is a good opportunity to apply
theoretically and verify experimentally the concepts of the
quantum mechanics. In fact several interesting theoretical
features, as macroscopic quantum tunneling and macro-
scopic quantum coherence, could be observed in BEC’s
in the near future. A condensate is characterized by a
macroscopic occupation of a single particle state and by
a large spatial correlation for the atomic spatial distri-
bution. The long range spatial order has been studied in
a series of theoretical papers [2–8]. On the experimental
side interference experiments involving sodium and rubid-
ium condensates [9,10] have demonstrated the presence
of long-range order. The excellent agreement between the
experimental results and theoretical analyses [6] has con-
firmed the presence of that long range order. More re-
cent experiments have explored some features of second
order [11] and third-order [12] atomic coherences. In ref-
erence [11] the relationship between the second order co-
herence and the interaction energy has been studied, in-
ferring that release energy measurements are consistent
with an unitary value for the second order coherence of a
pure condensate. Burt et al. [12] have measured the three-
body rubidium recombination rate of a condensate and of
a cold noncondensate. They derive that the ratio of the
third order coherences in those systems is 7.4 ± 2.6, in
good agreement with the predicted value of 6.

Two standard tools to study the condensate are the
Gross-Pitaevskii equation and the Bogoliubov approxi-
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mation. Because in this approximation the Hamiltonian
is quadratic in the field, each property of the system is
derivable by the mean field ψ(x) and the first order cor-
relation function G(1)(x,y), that is related to the first or-
der coherence properties of a condensate. The mean field
is described by the Gross-Pitaevskii equation. An exten-
sive theoretical study of coherence properties of BEC has
been performed by Naraschewski and Glauber [8]. To cal-
culate the correlation functions they use the local density
approximation, that is suitable for large enough systems.
Furthermore they assume that the condensate kinetic en-
ergy is much smaller than the interaction energy. This
condition is not fulfilled in a region close to the surface of
the condensate, where the Laplacian of the wave function,
and therefore the kinetic energy, is not small. A standard
way to calculate the correlation functions is to solve an
eigenvector problem. For instance this method was used
in [13] for a spherically symmetric harmonic-oscillator trap
to evaluate the number of noncondensate atoms. In the
anisotropic tridimensional case it is essential to choose a
suitable set of functions to reduce the dimension of the
matrix to be diagonalized. Often it is not easy to find this
set and the matrix becomes very large for the numerical
calculations, for example in the case of a double well trap.

Purpose of the present work is to find also for
G(1)(x,y) a differential equation, similar to the Gross-
Pitaevskii equation for ψ(x), in order to provide the de-
pendence of the first order correlation on the physical pa-
rameters. This equation suggests an alternative method
to evaluate the correlation function. We introduce a dif-
ferential equation for the 2× 2 matrix F (x,y) = 〈x|F |y〉,
with x and y positions in the phase space. We find that
the knowledge of F (x,y) allows us to evaluate the cor-
relation functions. The complete calculation of G(1)(x,y)
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is not much more efficient than the eigenvector evalua-
tion. However our equation for F (x,y) allows to obtain
easily G(1)(x,y) for a fixed y or integrating it with a
weight function P (y). Our method is very useful if a com-
plete information is not required. Moreover it is suitable
to test numerically the approximations introduced with
other methods of solutions. At first we will consider the
case of zero temperature, then we generalize our equation
to the case of non zero temperature [14].

2 Correlation function

In the Bogoliubov approximation [15] the quantum boson
field ψ̂(x) is written in the following way [16]

ψ̂(x) = ψ(x) +
∞∑
λ=1

[uλ(x)âλ + v∗λ(x)â†λ] (1)

where ψ is determined by the time-independent Gross-
Pitaevskii equation

− ~
2

2m
∇2ψ + g|ψ|2ψ = µψ (2)

and µ is the chemical potential. In equation (1) âλ and â†λ
are annihilation and creation operators and (uλ, vλ) are
the solutions of the following eigenvector problem

Lεuλ + gψ2vλ = Eλuλ (3)
Lεvλ + g(ψ∗)2uλ = −Eλvλ (4)

with Lε = −(~2/2m)∇2 +2g|ψ|2 +V −µ+ε. ε is a positive
infinitesimal number that we introduce to eliminate some
divergences to be met with. To simplify the notation we
do not indicate the dependence of the eigenvectors and
the eigenvalues on ε. The zero energy eigenvector (λ = 0)
is excluded in summation of equation (1) (as applied for
instance in Ref. [13]).

(uλ, vλ) satisfy the orthonormality and completeness
relations∫

[uλ(x)u∗λ′(x)− vλ(x)v∗λ′(x)]d3x = δλ,λ′ , ∀λ, λ′ ≥ 0 (5)

∞∑
λ=0

[uλ(x)u∗λ(y) − vλ(x)v∗λ(y)] = δ(x− y). (6)

We point out that for ε = 0 (u0 = ψ, v0 = −ψ∗) is
the energy eigenvector with eigenvalue E0 = 0. (u0, v0) is
not normalizable, because

∫
[|u0|2 − |v0|2]d3x =

∫
[|ψ|2 −

|ψ|2]d3x = 0.
The ground state is defined by the equations âλ|0〉 = 0,

∀λ ≥ 1. Explicitly using equation (1) we find that the
first order correlation function for temperature T = 0 is
given by

〈ψ†(x)ψ(y)〉 = ψ∗(x)ψ(y)

+ lim
ε→0+

∞∑
λ,λ′=1

〈0|[u∗λ(x)â†λ+vλ(x)âλ][uλ(y)âλ+v∗λ(y)â†λ]|0〉

= ψ∗(x)ψ(y) + C(x,y) (7)

with

C(x,y) = lim
ε→0+

∞∑
λ=1

vλ(x)v∗λ(y). (8)

Equation (1) cannot be considered a operator iden-
tity and, to be more rigorous, we should have followed
the Gardiner’s approach [17]. However the resulting
equations (7, 8) are not changed. The set of equa-
tions (3, 4, 7, 8) defines completely our problem.

Our first purpose is to find for C(x,y) a compact equa-
tion, where no eigenvector set appears and the dependence
on the physical parameters is more evident. We introduce
the annihilation operator field

φ̂(x) =
∞∑
λ=0

[
uλ(x)âλ + v∗λ(x)â†λ

]
, (9)

where the summation is performed over all the eigenvec-
tors. φ̂(x) satisfies the usual commutation relations

[φ̂(x), φ̂†(y)] = δ(x− y). (10)

We then consider the state |0̃〉 defined by the equations
aλ|0̃〉 = 0, ∀λ ≥ 0. It is evident that the Wigner function
for |0̃〉 is

W ({aη}, {a∗η}) ∝ e−2
P∞
λ=0 a

∗
λaλ . (11)

By the orthonormality relations (5) the Wigner function
becomes

W ({aη}, {a∗η}) ∝ e−2
R

d3x
P∞
λ,λ′=0(uλ′u

∗
λ−vλ′v∗λ)a∗λaλ′

= e−
R

d3x
P∞
λ,λ′=0[(u∗λa∗λ+vλaλ)(uλ′aλ′−v∗λ′a

∗
λ′)

+(u∗λa
∗
λ−vλaλ)(uλ′aλ′+v

∗
λ′a
∗
λ′ )]. (12)

It is useful to write aλ as a two component vector and uλ,
vλ as 2× 2 matrices. We will use the notations

aλ =
(

Re[aλ]
Im[aλ]

)

uλ =
(

Re[uλ] −Im[uλ]
Im[uλ] Re[uλ]

)
, vλ =

(
Re[vλ] −Im[vλ]
Im[vλ] Re[vλ]

)

a∗λ = σ̂3aλ, u∗ = σ̂3uλ, v∗λ = σ̂3vλ (13)

where σ̂3 is the Pauli matrix with the diagonal elements
1 and −1. With this vector and matrix notations equa-
tion (12) becomes

W ({aη}) ∝ e−2
R

d3x
P∞
λ,λ′=0(a†λu

†
λ+a∗†λ v

∗†
λ )(uλ′aλ′−v∗λ′a

∗
λ′).
(14)

Equations (3, 4) allow us to find that

H1(ua + v∗a∗) = Eλ(ua− v∗a∗) (15)
H2(ua− v∗a∗) = Eλ(ua + v∗a∗) (16)



A. Montina and E. Arimondo: Correlation functions for a BEC 107

where H1 = Lε+gΨ2σ̂3, H2 = Lε−gΨ2σ̂3 and Ψ is a 2×2
matrix constructed by ψ as the u and v matrices. From
these equations we deduce

(H1 ·H2)1/2(ua− v∗a∗) = Eλ(ua− v∗a∗) (17)

and from equations (15, 17)

W ({aη}) ∝

e−2
R

d3x
P∞
λ,λ′=0(a†λu

†
λ+a∗†λ v

∗†
λ )(H1·H2)−1/2H1(uλ′aλ′+v

∗
λ′a
∗
λ′).

(18)

Note that if we did not use our real notation we had to
introduce antilinear operators.

We now perform the transformation

φ(x) =
∞∑
λ=0

[uλ(x)aλ + v∗λ(x)a∗λ] (19)

to obtain the W as a function of the field φ(x) that cor-
responds to the quantum field φ̂(x) of equation (9)

W ({φ}) ∝ e−2
R

d3xφ†(x)(H1·H2)−1/2H1φ(x). (20)

It is evident that (H1 · H2)H1 = H1(H2 · H1). Therefore
M = (H1 ·H2)−1/2H1 = H1(H2 ·H1)−1/2 = M† , i.e. M
is a symmetric operator. More in general

f(H1 ·H2) ·H1 = H1 · f(H2 ·H1). (21)

It is then easy to demonstrate that the mean weighted
with the Wigner function is given by

〈φi(x)φj(y)〉W =
1
4
M−1

(x,i),(y,j)

≡ 1
4

[
H−1

1 (H1 ·H2)1/2
]

(x,i),(y,j)

=
1
4
〈x, i|H−1

1 (H1 ·H2)1/2|y, j〉 · (22)

In fact, if T̂k,l is a symmetric matrix then exists a orthog-
onal transformation zk =

∑
l Ôk,lZl that diagonalizes T̂ .

Therefore∫
zizje−2

P
k,l T̂k,lzkzldz

=
∑
i′,j′

Ôi,i′Ôj,j′

∫
Zi′Zj′e−2

P
k T̂
′
k,kZkZkdZ

= 1/4
∑
i′,j′

Oi,i′Oj,j′(T̂ ′
−1

)i′,j′ = 1/4(T̂−1)i,j . (23)

The expectation value of an operator F (φ̂, φ̂†), symmetri-
cally ordered, is given by the mean of the classical function
F (φ, φ∗) weighed with the Wigner function, therefore

1/2〈0|φ̂†(x)φ̂(y) + h.c.|0〉 =
〈(φ1(x)− iφ2(x))(φ1(y) + iφ2(y))〉W . (24)

Combining equations (10, 22, 24) we find that

C̃(x,y) ≡ 〈0|φ̂†(x)φ̂(y)|0〉
= F(x,1),(y,1) + F(x,2),(y,2) + iF(x,1),(y,2) − iF(x,2),(y,1)

(25)

where the operator F is defined by

F ≡ 1
4
H−1

1

[
(H1 ·H2)1/2 −H1

]
.

The λ = 0 term should be subtracted from C̃(x,y) in or-
der to obtain the C(x,y) quantity defined in equation (8)

C(x,y) = lim
ε→0+

[
C̃(x,y)− v0(x)v∗0(y)

]
(26)

where C̃(x,y) and v0(x) depend implicitly by the pa-
rameter ε. v0(x) can be calculated solving the dynami-
cal equations obtained replacing Eλ with i~∂/∂t in equa-
tions (3, 4). In fact, if u(x, t) and v(x, t) are the solution
of these equations then

v0(x) ∝
∫ ∞
−∞

dt
∫ η

0

dEeiEtv(x, t)

=
∫ ∞
−∞

dt
1
it
(
eiηt − 1

)
v(x, t)

u0(x) ∝
∫ ∞
−∞

dt
∫ η

0

dEeiEtu(x, t)

=
∫ ∞
−∞

dt
1
it
(
eiηt − 1

)
u(x, t) (27)

where η is a number such that E0 < η < E1. It is con-
venient to get u(x, 0) = v(y, 0) = ψ as initial state and
to introduce a temporal Gaussian window to lower the
convergence time.

We have reduced our problem to the evaluation of the
operator F . F satisfies the following equation

H1 · F =
1
4

[
(H1 ·H2)1/2 −H1

]
≡ S (28)

that is

−∇2F (x,y) +M2F (x,y) =
2m
~2

S(x,y) (29)

where

M2 =
2m
~2

[
V + 2gΨ∗Ψ − gΨ2 − µ+ ε

]
. (30)

Equation (29) is a Yukawa-like equation with a coordinate
dependent mass and a charge distribution S(x,y) in x.
Both S and M are 2× 2 matrices.

If S is known, F (x,y) can be evaluated finding for
all the y positions the stationary state of the following
differential equation:

∂

∂t
F (x,y) +H1F (x,y) = S(x,y). (31)
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Every function whose evolution is determined by equa-
tion (31) collapses in this stationary state because H1 is
a positive eigenvalue operator.

The standard method to calculate the correlation func-
tion is to solve the eigenvector problem of equations (3, 4)
using equations (7, 8). However in some cases the matrix
to be diagonalized becomes too large to be handled. Equa-
tion (28) can be useful to extract informations about the
correlation function without the resolution of an eigenvec-
tor problem.

If we want to calculate C(x,y) with a fixed y or inte-
grating y with a weight function P (y)

C(x) =
∫
C(x,y)P (y)d3y (32)

we have to solve only the differential equation (31) with
y fixed or with the source term

(S0)i(x) =
2∑
j=1

∫
Si,j(x,y)Pj(y)d3y. (33)

where

P(y) =

(
P (y)

P (y)

)
.

This approach allows to decrease considerably the compu-
tation time.

The question to be solved is the evaluation of S0. To
calculate the source term the square root in the second
term of equation (28) should be known, but that requires
to solve an eigenvector problem that could be avoided
through an alternative method. It is well known from the
Dirac theory that a square root of the operator −∇2 +m2

is a local operator with first order differential derivatives
that multiply anticommuting matrices. The only differ-
ence between that square root and the nonlocal operator√
−∇2 +m2 is the sign of the eigenvalues, that in the last

case are all positive.
A local non-positive square root exists also for R =

H1 ·H2. R has the form, apart from a constant factor,

R =
[
−∇2 +Q1 +Q2σ̂1 +Q3σ̂3

]
×
[
−∇2 +Q1 −Q2σ̂1 −Q3σ̂3

]
(34)

where Q1, Q2 and Q3 are three real functions. It is easy
to demonstrate that the operator

Hr = σ̂2(−∇2 +Q1)− iσ̂3Q2 + iσ̂1Q3 (35)

is square root of R, that is H2
r = R.

If P+ and P− are the projections of P respectively
over the positive and negative eigenvalue subspaces of Hr

then

S0(x) = Hr(P+ −P−) (36)

We now describe how to handle P+ − P−. If P(x, τ) is
solution of the equation

i
∂

∂τ
P = HrP (37)

it is evident that∫ ∞
0

dE
∫ ∞
−∞

P(x, τ)eiEτdτ = P+(x),∫ 0

−∞
dE
∫ ∞
−∞

P(x, τ)eiEτdτ = P−(x). (38)

Performing the integration in E, we obtain

P+(x)−P−(x) =
1
π

lim
η→0+

∫ ∞
η

1
τ

[P(x, τ) −P(x,−τ)]dτ.

(39)

Therefore

S0(x) =
1
π
Hr lim

η→0+

∫ ∞
η

1
τ

[P(x, τ) −P(x,−τ)]dτ. (40)

The solution of equation (37) allows to evaluate the source
term of equation (33). The direct calculation of equa-
tion (39) is probably not the best choice. In fact, if the
ratio between the greatest and lowest frequencies is too
large then the integration step has to be too small with
respect to the integration time. In this case it is conve-
nient to perform the energy integration of equations (38)
over the windows (E1, E2), (E2, E3), (E3, E4), ..., with
E1 > E2 > E3... and to choose for each window a suitable
integration step. It is also convenient to use a temporal
Gaussian window to reduce the calculation time. In this
article we do not discuss these numerical questions into
details.

3 Numerical tests

At this stage we have all the tools to evaluate the corre-
lation function of equation (32). We have checked numer-
ically in the one-dimensional case that the same source
terms are obtained from equation (40) and by the diag-
onalization. Also the validity of equation (28) has been
verified numerically.

In order to test the technique we have considered the
case of a one-dimensional harmonic trap with V (x) =
1/2x2 and a coupling constant g = 10 (~ = m = 1). The
ψ(x) solution of the Gross-Pitaevskii equation is reported
in the lower part of Figure 1. Instead sections of S1,1(x, y)
are reported in the upper part of the figure for different
values of y. The results of the figure point out that the
source term is a near diagonal operator. In fact S is a
sum of a diagonal matrix and a smooth function f(x, y).
In other terms, for every y, the source has a point-like
charge with a cloud around.

We have considered also a tridimensional case. The
studied system is constituted by 87Rb atoms confined
in a spherical harmonic trap in the |F = 1,mf = −1〉
hyperfine sublevels. For the scattering length we have
used a = 109.1 a.u. The trap frequency is supposed
ω = (2π)300 s−1. We have imposed y = 0 in equation (32)
in order to exploit the trap symmetry and therefore to
simplify the calculation. The application into the case of
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Fig. 1. In (a) source term S1,1(x, y) in the one-dimensional
case as a function of x, calculated for three values of y and
a coupling constant g = 10. In (b) density function |ψ(x)|2
from the Gross-Pitaevskii equation for the same parameters.
Adimensional unities are used.

Fig. 2. Plot of C(r) = C(x,y = 0) as a function of r = |x| for
some values of the boson number N . We have considered 87Rb
atoms trapped in the |F = 1,Mm = −1〉 hyperfine sublevel.

asymmetric trap require only some additional algebra [18].
In Figure 2 we plot C(r) = C(x,y = 0) as a function of
r = |x| for different values of the boson number N . The
functions obtained by diagonalization and solving our dif-
ferential equation overlap and therefore are indistinguish-
able in the plot.

We note that C(r = 0) increases with N . This is obvi-
ous because the correlations of the field fluctuations are a
consequence of the Gross-Pitaevskii non-linear term. The
variation scale of C(r) is given by 1/M(r) and for N = 0
its magnitude is of the order of

√
~/mω = 6.2× 10−7 m.

4 Finite temperature

Equation (28) can be generalized to include the finite tem-
perature fluctuations. Equation (11) is replaced by

W ({aη}, {a∗η}) ∝ e
−
P∞
λ=0

a∗λaλ
1/2+(eβλ−1)−1

(41)

where βλ = Eλ/kT . For T � Eλ the correct classical
distribution is obtained.

Using Equation (17) we find W as a function of φ

W ({φ}) ∝ e−2
R

d3xφ†(x)(H1·H2)−1/2A−1
T H1φ(x) (42)

where AT is the operator

AT = 1 + 2
(

e
(H1·H2)1/2

kT − 1
)−1

. (43)

The F operator of equation (25) is replaced by

FT ≡
1
4
H−1

1

[
AT (H1 ·H2)1/2 −H1

]
. (44)

It is possible to find a relation between FT and F = F0.
We subtract 1/4 from the two terms of equation (44) and
multiply them by A−1

T . We obtain using equation (21)

H1B
−1
T (FT − 1) =

1
4

(H1 ·H2)1/2. (45)

where

BT = 1 + 2
(

e
(H2·H1)1/2

kT − 1
)−1

. (46)

Therefore

B−1
T (FT − 1) = B−1

T ′ (FT ′ − 1). (47)

Setting T ′ = 0 we finally find

FT = 1 +BT (F − 1). (48)

We can perform the following expansion

BT = 1 + 2e−
(H2·H1)1/2

kT

(
1− e−

(H2·H1)1/2

kT

)−1

= 1 + 2
∞∑
n=1

e−
n(H2·H1)1/2

kT . (49)

If

Fi(x) =
∑
j

∫
Fi,j(x,y)Pj(y)d3y

and FT (x) =
∑
j

∫
(FT )i,j(x,y)Pj(y)d3y

then

FT = F + 2
∞∑
n=1

e−
n(H2·H1)1/2

kT (F + P)

= F + 2
∞∑
n=1

e−
nH̃r
kT (F+ + P+) + 2

∞∑
n=1

e
nH̃r
kT (F− + P−)

(50)

where F+, P+ and F−, P− are the projections over
the positive and negative eigenvalues subspaces of H̃r =
σ̂3Hrσ̂3. If F±(x, τ) and P±(x, τ) are the solution of the
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differential equation [19]

∂

∂τ
(·) = H̃r(·) (51)

with F±(x, 0) = F± and P±(x, 0) = P±, then

FT (x) = F(x) + 2
∞∑
n=1

[
(F+ + P+)(x,− n

kT
)

+(F− + P−)(x,
n

kT
)
]
. (52)

Equations similar to the (25, 26) ones can be defined for
temperatures T different from zero. Therefore we have
shown that it is possible derive the correlation function
for T 6= 0 by knowing it for T = 0.

5 Conclusion

In conclusion we have introduced a differential equation
that is useful to evaluate numerically the first order corre-
lation function G(1)(x,y) for some fixed y or its integra-
tion over y with a weight function P (y). In the Bogoliubov
approximation the Hamiltonian is quadratic in the field,
therefore the ground state is a squeezed state, that is,
the Wigner function is a Gaussian one for all its infinite
modes. The Gaussian parameters are ψ(x), that defines
its position in phase space, and the function F (x,y) that
we have introduced. There are not other free parameters.
Therefore each property of the BEC is derivable by solving
the Gross-Pitaevskii equation and equation (28). In par-
ticular the resolution of these equations allows to evaluate
the higher order correlation functions.

Our method can be applied to study the quantum fluc-
tuations of the condensate in double-well traps, improving
the two mode model, that is the standard approach to deal
with these problems [20].

References

1. For a recent review see Bose-Einstein condensation in
atomic gases, edited by M. Inguscio, S. Stringari, C.E.
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